| State or Territory. | Station. | For | 1887. | Since establishment of station. | | | | | |-------------------------------------|----------------------------------|----------------------|----------------|---------------------------------|------------------------------------|----------------|--------------------------|--| | | | Max. | Min. | Max. | Year. | Min. | Year, | | | 41. | | 0 | 0 | 0 | _ | 0 | | | | Alabama | Mobile | 76.8 | 36.2 | 85.0
86.3 | 1879
1882 | 29.0 | 188
187
187 | | | Arizona | Montgomery | 79.9 | 32.4 | 90.0 | 1879 | 25.0
- 8.0 | 1873 | | | | Prescott | 78.9 | 23.1 | 83.0 | 1879 | 11.0 | 188 | | | Arkansas | Fort Smith | 76.0 | 28.0 | 82.8 | 1879
1884 | 23.5 | 1884 | | | | Little Rock | 74.9 | 30.0 | 83.0 | 1882 | 23.0 | 1886 | | | - willOrnia | San Francisco | 78.0
82.2 | 45.0 | 77.0 | 1879
1879 | 39.0 | 1880 | | | Do
Colorado | San Diego
Denver | 74.7 | 43.5
13.2 | 99.0 | 1879 | -10.7 | 1886 | | | 110 | Pike's Peak | 31.3 | - 4.9 | 43.0
69.0 | 1879
1880 | -29.0 | 187 | | | ounecticut | New Haven | 51.4 | 11.5 | 69.0 | | - 0.2 | 187
188
188 | | | Dakota | New London | 53.3 | 15.2 | 64.0 | 1878
1879, 1882 | 4.0 | 1880 | | | | Fort Buford
Yankton | 59.0 | 9.8 | 70.0 | 1879 | -23.0
-16.0 | TR76 TRR | | | | Washington City | 77.5
65.0 | 20.8 | 79.0
88.0 | 1879
1880 | 4.0 | 1873, 1876
1873, 1886 | | | · IOTIGA | Jackson ville | 80.0 | 35.7
58.4 | 88.0 | 1882 | 31.0 | 1873, 1876 | | | Do
Jeorgia | Key West | 81.6 | 58.4 | 89.0 | 1873, 1874
1882 | 53.0 | 1873, 1880 | | | | Atlanta
Savannah | 73·5
81.2 | 25.2 | 87.0 | 1882 | 27.0 | 187 | | | uaho | Boisé City | 73.6 | 32.5
23.8 | 76.0 | 1881 | 9.0 | | | | | Cairo
Chicago
Indianapolis | 74.6
68.0 | 24.2 | 84.0 | 1879 | 10.0 | 1873 | | | Do | Chicago | | 9.3
15.8 | 73.0 | 1875 | -12.0 | 187
188 | | | Indiana
Indian Territory
Iowa | Fort Sill | 69.6
86.0 | 26.0 | 77.0
95.0 | 1875
1879 | 10.0 | 188 | | | | Dubuque | 70.5 | | 75.0 | 1875
1880 | 10.0 | 187 | | | Do | Des Moines | 72.4
80.1 | 9.8 | 75.0
80.0 | 1880 | - 5.6
- 8.0 | 1882 | | | Do | Dodge City
Leavenworth | 80.1 | 10.6 | 89.0 | 1879 | - 8.0 | 1886 | | | Do
Kentucky
Louisiana | Leavenworth | 83.6 | 20.5 | 84.0 | 1879 | 2.0 | 187 | | | Louisiana | Louisville New Orleans | 79.3
80.8 | 43.8 | 79.0 | 1879 | 3.0
36.0 | 187
188 | | | Do | Shreveport | 83.8 | 34.6 | 90.0 | 1882 | 26.0 | 1870 | | | | Eastport | 45.0
46.4 | 2.0 | 53.0 | 1878 | 7.9 | 1880 | | | Do
Maryland
Massachusetts | Portland
Baltimore | 56.6 | 21.4 | 76.0 | 1874
1880 | - 7.0
5.0 | 187 | | | dassachusetts. | Boston | 52.9 | 9.8 | 72.0 | 1880 | - 7.5 | 187 | | | BWII | Marquotto | 46.1 | -14.2 | 70.0 | 1878 | -16.0 | 1884 | | | | Grand Haven | 59.8 | 7.4 | 71.0 | 1878
1881 | - 4.9 | 188
188 | | | Innesota | Saint Vincent
Saint Paul | 45.0 | -27.0
- 7.1 | 49.0 | 1879 | -31.0
-22.5 | 187 | | | Do Mississippi Missouri Montano | Vicksburg | \$3.6
80.1 | 36.9 | 85.0 | 1880 | 27.0 | 187
188 | | | lissouri | Saint Louis | 79.1 | 22.9 | 82.0 | 1879
1885 | 27.0
8.0 | 1873, 1876 | | | | Fort Assinationne | 60.2 | -14.7 | 68.2 | 1885 | -25.8 | 1884 | | | Do | Helena | 67.4
78.0 | 4.2 | 86.0 | 1881
1879 | -10.0
-21.0 | 1880 | | | Yebraska
Do | North Platte | 78.1 | 10.0 | 82.0 | 1879 | 7.0 | 1880 | | | Nevada | Winnemucca | 74.7 | 17.7 | 82.0 | 1879 | - 3.0 | 1882 | | | New Hampshire | Mount Washington | 32.3 | -25.9
18.4 | 47.0 | 1876 | -49.0
8.0 | 1872 | | | New Mont | Atlantic City | 56.2
67.0 | 18.4 | 72.0
82.0 | 1880
1879 | | 1880 | | | New York | Santa FéBuffalo | 51.0 | 19.5
11.4 | 72.0 | 1875 | 0.0
— 4.1 | 1884 | | | North Carolina | New York City | 49.6 | 16.3 | 72.0 | 1875
1879
1879, 1880
1878 | 3.0 | 1872
1884 | | | Carolina | Charlotte | 79.7
81.9 | 16.3
26.8 | 79.0 | 1879, 1880 | 23.0 | | | | Do | Wilmington | | 27.7
18.6 | | | 20.0 | 1873 | | | Do | Cincinnati | 73.0
62.0 | 10.9 | 77.0
76.0 | 1875
1886 | T.0 | 187
188 | | | | Sandusky
Portland | | 31.2 | 79.0 | 1886 | 25.5 | 1880 | | | Do | Roseburg | 75.2
81.0 | 28.6 | 79.0
80.0 | 1881, 1883 | 19.0 | 1880 | | | ennsylvania | Pitteburg | 68.5 | 14.9 | 80.0 | 1876 | 2.0 | 1877
1872 | | | Shode Island | Philadelphia
Block Island | 53.3 | 17.2 | 75.0
56.0 | 1880
1886 | 5.0 | 1886 | | | Do | Charleston | 53.7 | 33.9 | 85.0 | 1882 | 5.8
28.0 | 1876 | | | | Knoxville | 75.6 | 21.6 | 13.0 | 1882 | 6,0 | 1873
1876 | | | Do | Memphis | 75.6
76.8
84.8 | 30.2 | 85.0 | 1879 | 18.0 | 1876
1880 | | | Do | Brownsville | 84.8 | 46.9 | 92.3
86.0 | 1884
1880 | 35.0 | 1880 | | | Jtah " | Fort Elliott
Salt Lake City | 82.8 | 24.0
27.5 | 77.0 | 1870 | 4.0 | 1874 | | | | Lynchburg | 73·9
80.6 | 23.5 | 79.0 | 1879 | 4.0
16.0 | 1884 | | | Do | Norfolk | 75.8 | 25.1 | 79.0 | 1880 | 16.0 | 1872
1882 | | | Vashington Ter | Spokane Falls | 65.7 | 15.2 | 74.0 | 1881 | 7.0 | | | | Do Visconsin | Olympia | 63.2 | 25.2 | 71.0 | 1881 | 23.I | 1880 | | | Do | La Crosse | 65.9
56.8 | - 1.0
- 4.2 | 72.0 | 1875
1878 | -23.0
- 8.5 | 1873
1884 | | | | TELL MOUNTO | 20.0 | 4.4 | ,5.0 | 10,0 | 9.5 | | | tables and fruit, especially in the upper counties, while the freeze on the 29th and 80th was very disastrous throughout the state; much of the fruit which survived the first-mentioned frost succumbing to the latter. All the early varieties of peaches were killed. Plums and cherries suffered severely. Strawberries were set back about two weeks. In some instances potatoes were injured where set back about two weeks. jured, while beans, cucumbers, and squashes were killed. Frosts occurred in the various districts as follows: New England.—1st to 31st. Middle Atlantic states.—1st to 31st. South Atlantic states.—1st, 2d, 3d, 10th to 20th, 22d, 23d, 24th, 26th, 29th, 30th, 31st. 18th, 19th, 20th, 23d, 24th, 25th, 30th; Sanford, 1st, 18th, 19th; Duke, 1st, 19th 20th, 24th, 30th; Manatee, 1st, 29th; Alva, 15th, 17th, 18th. East Gulf states.—15th, 18th to 20th, 22d, 23d, 29th, 30th. West Gulf states.—10th, 11th, 14th, 17th, 18th, 21st to 25th, 28th, 29th, 30th. Tennessee.—11th to 15th, 18th to 20th, 23d, 25th, 28th to 31st. Ohio Valley.—1st to 6th, 8th to 31st. Lake region.—1st to 31st. Extreme northwest.—2d to 10th, 12th to 31st. Upper Mississippi and Missouri valleys.—1st to 31st. Northern slope.—1st to 31st. Middle slope.—1st to 12th, 15th to 23d, 25th to 28th, 30th, 31st. Southern slope.—1st to 6th, 8th to 11th, 13th, 14th, 16th, 17th, 20th to 25th, 27th, 28th, 29th, 31st. Southern plateau.—1st 2d, 3d, 5th to 13th, 15th to 18th, 20th to 25th, 28th to 31st. Middle plateau.—1st to 23d, 25th to 31st. Northern plateau.—1st, 3d, 4th, 5th, 8th to 13th, 16th, 18th to 23d, 25th to 30th. North Pacific coast region.—1st to 4th, 10th, 12th, 17th to 22d, 26th, 27th, 29th, 30th. Middle Pacific coast region.—1st, 5th, 6th, 8th, 18th to 21st. Ice formed in the southern parts of the country as follows: Arkansas.—Lead Hill, 22d, 23d, 28th, 29th; Little Rock, 29th. Georgia.—Savannah, 28th, 31st. Louisiana.—Liberty Hill, 22d, 23d. South Carolina.—Spartanburg and Stateburg, 15th, 18th, 19th, 20th, 29th, 30th; Charleston, 18th, 29th. Texas.—Corsicana, 23d, 28th, Palestine, 28th. ## TEMPERATURE OF WATER. The following table shows the maximum and minimum temperature of the water at the several stations; the monthly ranges of water temperature; the mean water temperature; the average depth at which the observations were made; and the mean temperature of the air: Temperature of water for March, 1887. | | | | | <u> </u> | | | |---|-------|------------------|--------|------------------------------------|---|--| | Station. | | erature
ttom. | Range. | Mean
water
tempera-
ture. | Mean
tempera-
ture of the
air at
station. | Average
depth,
feet and
tenths. | | | Max. | Min. | | | | | | Almana Milaki a | ۰ | | | . 0 | ۰ | | | Alpena, Mich a | | 37.8 | 3.7 | 39.4 | 37.8 | 11.6 | | Boston, Mass | | 31.0 | 6.6 | 34.5 | 31.6 | 22.9 | | Buffalo, N. Y.a | | 3 | | 34.5 | | | | Cedar Keys, Fla | | 57.3 | 5.1 | 64.6 | 61.3 | 8.3 | | Charleston, S. C.b | | 54.3 | 4.6 | 56.6 | 54.8 | 36,ŏ | | Chincoteague, Va | 51.4 | 37.4 | 14.0 | 42.7 | 40.3 | 3.3 | | Cleveland, Ohio a | | | | | | ••••• | | Detroit, Mich. a | | | | | | *************************************** | | Duluth, Minn. a | | | | | | | | Eastport, Me | 36.0 | 34.0 | 2,0 | 35.1 | 28.5 | 14.I | | Escanaba, Mich. a | | *********** | | ••••••• | | | | Grand Haven, Mich | | 32.1 | 4.0 | 33.7 | 27.3 | 17.8
18.0 | | Jacksonville, Fla | | 56.1 | 13.8 | 63.4 | 59.5 | 18.9 | | Key West, Fla | 78.3 | 69.0 | 9.3 | 74.3 | 70.7 | 16.2 | | Mobile, Ala | 57.0 | 52.3 | 4.7 | 54.6 | 58.9
34.0 | 11.5 | | New London, Conn | | 33.8 | 5.1 | 36.3 | 34.3 | 14.9 | | New York City | | 33.I
44.2 | 5.1 | 35.7
46.1 | 44.1 | 15.7 | | Norfolk, Va
Pensacola, Fla | | 58.3 | 10.1 | 64.4 | 60.2 | 18.0 | | Portland, Me | | 30.0 | 7.1 | 33.9 | 28.8 | 17.0 | | Portland, Oregon | | 40.6 | 7.6 | 45.6 | 49.4 | 57.4 | | Sandusky, Ohio c | | 33.0 | 5.0 | 35.1 | 31.6 | 11.5 | | Savannah, Ga | | 53.3 | 6.1 | 56.4 | 56.5 | 10.3 | | Toledo, Ohio d | | 33.2 | 9.3 | 38.2 | 31.8 | 15.8 | | *************************************** | 1,2.0 | _ا | 1 | | | _ | Florida.—Cedar Keys and Limona, 1st; Archer, 1st, 2d, 15th, a Frozen throughout the month. b Record for 26 days. c Record for 20 dinterrupted by ice. d Record for 29 days; observations interrupted by ice. c Record for 20 days; observations ## PRECIPITATION (expressed in inches and hundredths). The distribution of precipitation over the United States and | table of miscellaneous meteorological data are given, for each Canada for March, 1887, as determined from the reports of Signal Service station, the total precipitation, with the deabout six hundred stations, is exhibited on chart iii. In the partures from the normal. The figures above the several geo-